EE 435

Lecture 18

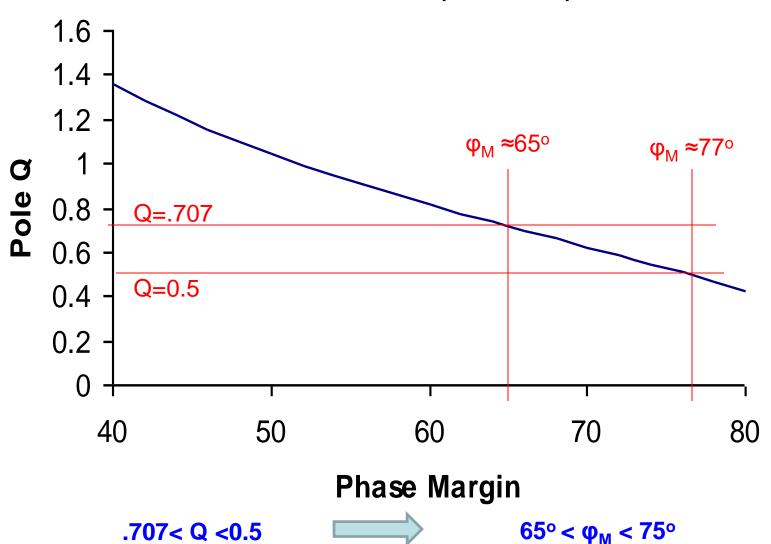
- Moving the RHP zero into LHP in Miller Compensated Amplifier
- Breaking the Loop for Loop Gain Analysis

. · · · · Review from last lecture . · · · ·

Relationship between pole Q and phase margin

In general, the relationship between the phase margin and the pole Q is dependent upon the order of the transfer function and on the location of the zeros

In the special case that the open loop amplifier is second-order low-pass, a closed form analytical relationship between pole Q and phase margin exists and this is independent of A_0 and β ..


$$Q = \frac{\sqrt{\cos(\phi_M)}}{\sin(\phi_M)} \qquad \qquad \phi_M = \cos^{-1}\left(\sqrt{1 + \frac{1}{4Q^4}} - \frac{1}{2Q^2}\right)$$

The region of interest is invariable only for 0.5 < Q < 0.7 larger Q introduces unacceptable ringing and settling smaller Q slows the amplifier down too much

• • • • Review from last lecture .• • • • •

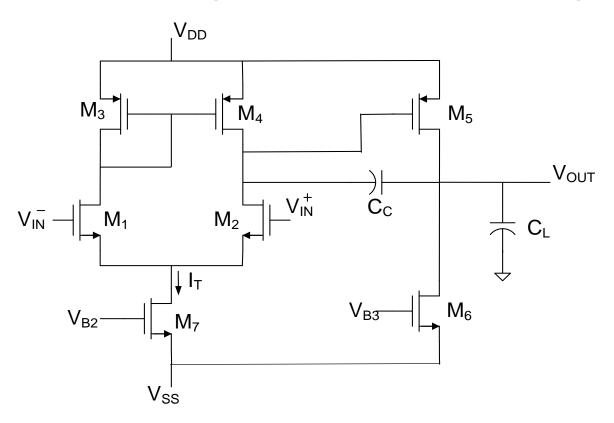
Phase Margin vs Q

Second-order low-pass Amplifier

. · · · · Review from last lecture . · · · ·

Compensation Summary

- Gain and phase margin performance often strongly dependent upon architecture
- Relationship between overshoot and ringing and phase margin were developed only for 2nd-order lowpass gain characteristics and differ dramatically for higher-order structures
- Absolute gain and phase margin criteria are not robust to changes in architecture or order
- It is often difficult to correctly "break the loop" to determine the loop gain Aβ with the correct loading on the loop (will discuss this more later)


Design of Two-Stage Op Amps

- Compensation is critical in two-stage op amps
- General approach to designing two-stage op amps is common even though significant differences in performance for different architectures

 Will consider initially the most basic two-stage op amp with internal Miller compensation

• • • • • Review from last lecture .• • • •

Natural Parameter Space for the Two-Stage Amplifier Design

 $S_{NATURAL} = \{W_1, L_1, W_3, L_3, W_5, L_5, W_6, L_6, W_7, L_7, I_T, I_{D6}, C_c\}$

Parameter Inter-dependence

$$A_{O} \cong \frac{g_{md}g_{mo}}{g_{oo}g_{od}}$$

$$GB \cong \frac{g_{md}}{C_{C}}$$

$$SR \cong \frac{I_{T}}{C_{C}}$$

$$g_{md} \cong \frac{1}{2}\sqrt{\mu C_{OX}\frac{W_{1}}{L_{1}}}\sqrt{I_{T}}$$

Practical Set of Design Parameters

$$S_{PRACTICAL} = \{P, \, \theta, \, V_{EB1}, \, V_{EB3}, \, V_{EB5}, \, V_{EB6}, \, V_{EB7}\}$$

7 degrees of freedom!

- P: total power dissipation
- θ = fraction of total power in second stage
- V_{EBk} = excess bias voltage for the k^{th} transistor
- Phase margin constraint assumed (so C_C not shown in DoF)

• • • • Review from last lecture .• • • •

Example for Design Procedure

Summary of Design Procedure for This Set of Specifications and this Architecture:

- 1. Choose channel length
- 2. Select: V_{EB3}, V_{EB5}, V_{EB6}
- 3. Select: V_{FB1}
- 4. Select: V_{EB7}
- 5. Choose P to satisfy power constraint
- 6. Choose θ to meet GB constraint
- 7. Compensation capacitance C_C
- 8. Calculate all transistor sizes
- 9. Implement structure, simulate, and make modifications if necessary guided by where deviations may occur

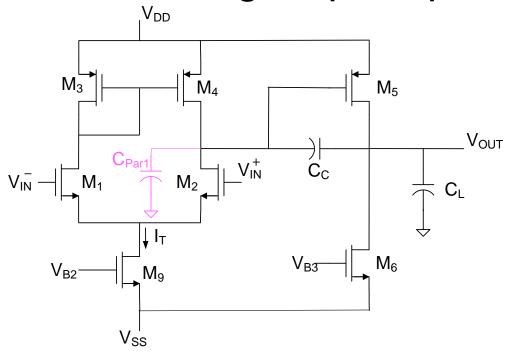
Note: Though not shown, this design procedure was based upon looking at the set of equations that must be solved and developing a sequence to solve these equations. It may not always be the case that equations can be solved sequentially.

Note: Different specification requirements (constraints) will generally require a different design procedure

Power distribution between stages

Note: Optimum power split for previous example was for dominant pole compensation in first stage. Results may be different for Miller compensation or for output compensation

For first-stage compensation capacitor with compensation criteria $p_2=3\beta A_0p_1$:

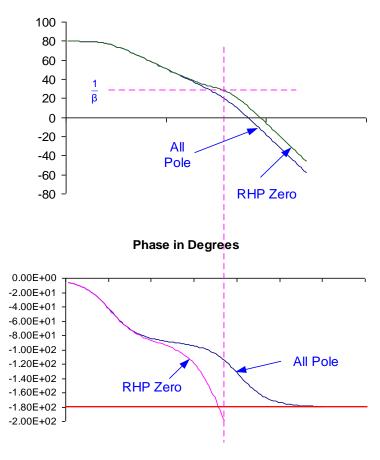

$$GB = \frac{\left(\lambda_p + \lambda_n\right)\theta P}{V_{DD}3\beta C_L}$$

For Miller Compensation with RHP zero and arbitrary Q compensation criteria:

$$GB = \frac{P(1-\theta)}{V_{DD}V_{EB1}C_{C}} = \frac{PQ^{2}(2\theta V_{EB1} - \beta(1-\theta)|V_{EB5}|)^{2}}{C_{L}\beta 2\theta V_{EB1}^{2}|V_{EB5}|V_{DD}}$$

By taking derivative of GB wrt θ , it can be easily shown that the derivative is positive in the interval $0<\theta\leq 1$ indicating that for a given P, want to make θ close to 1 to maximize GB

Basic Two-Stage Op Amp

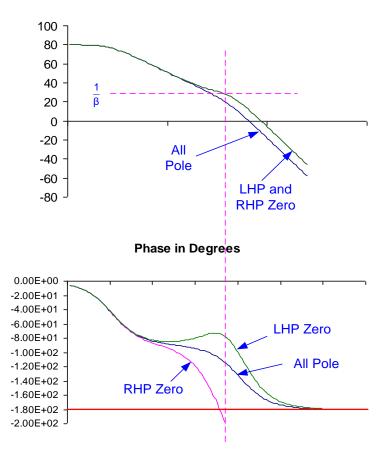

$$A_{FB}(s) \cong \frac{g_{md}(g_{m0} - sC_{c})}{s^{2}C_{c}C_{L} + sC_{c}(g_{mo} - \beta g_{md}) + \beta g_{md}g_{mo}}$$

Right Half-Plane Zero Limits Performance

- Why does the RHP zero limit performance?
- Can anything be done about this problem?
- Why is this not 3rd order since there are 3 caps?

Why does the RHP zero limit performance?

Gain Magnitude in dB


$$p_1 = -1$$
, $p_2 = -1000$, $z_x = \{none, +250\}$

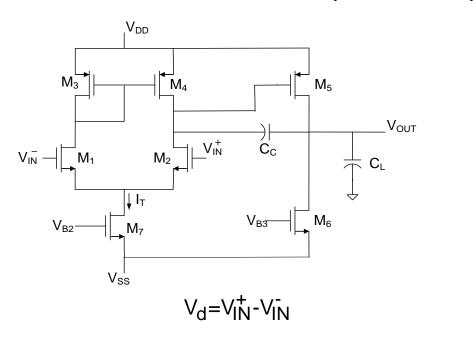
In this example:

- accumulate phase shift and slow gain drop with RHP zeros
- effects are dramatic

Why does the RHP zero limit performance?

Gain Magnitude in dB

 $p_1=1$, $p_2=1000$, $z_x=\{none,250,-250\}$


In this example:

- accumulate phase shift and slow gain drop with RHP zeros
- loose phase shift and slow gain drop with LHP zeros
- effects are dramatic

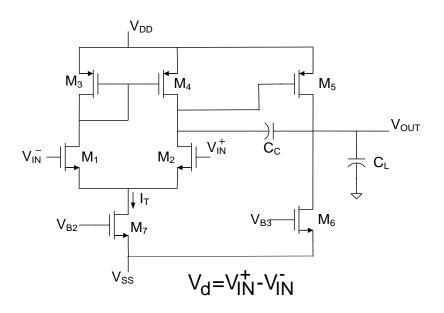
Two-stage amplifier

(with RHP Zero Compensation)

What causes the Miller compensation capacitor to create a RHP zero?

$$A_{V} = (A_{0}p_{1}p_{2})\frac{1}{(s+p_{1})(s+p_{2})}$$
with Miller Compensation
$$A_{V} = \left(A_{0}\frac{p_{1}p_{2}}{z}\right)\frac{-s+z}{(s+p_{1})(s+p_{2})}$$

At low frequencies, V_{OUT}/V_d is positive but at high frequencies it becomes negative

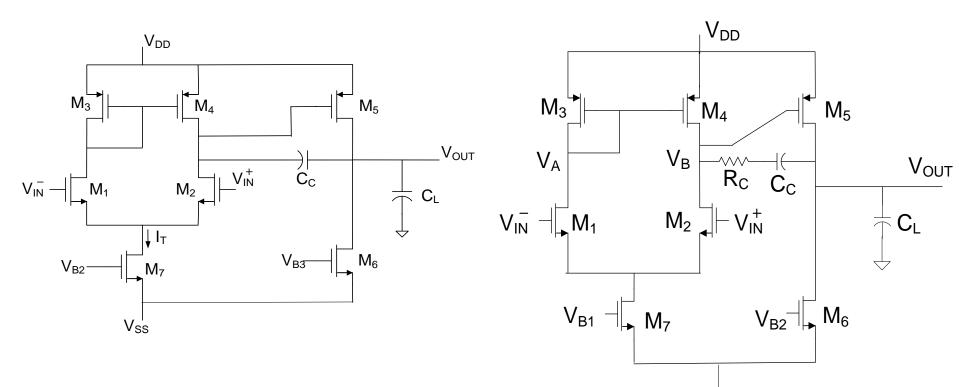

Alternately, C_c provides a feed-forward inverting signal from the input to the first stage output which also becomes the second stage output

Feed-forward paths create zeros in the gain transfer function!

Two-stage amplifier

(with RHP Zero Compensation)

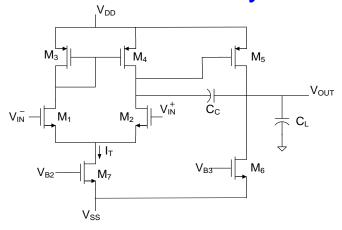
What can be done to remove the RHP zero?

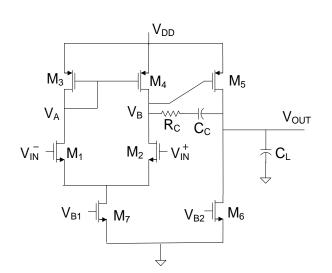


$$A_{V} = (A_{0}p_{1}p_{2})\frac{1}{(s+p_{1})(s+p_{2})}$$
with Miller Compensation

$$A_V = \left(A_0 \frac{p_1 p_2}{z}\right) \frac{-s+z}{(s+p_1)(s+p_2)}$$

Alternately, C_C provides a feed-forward inverting signal from the input to the first stage output which also becomes the second stage output

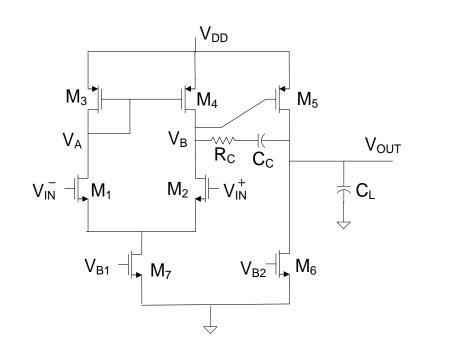

Break the feed-forward path from the output of the first stage to the output of the second stage at high frequencies



Right Half-Plane Zero Limits Performance

Will show zero can be moved to Left Half-Plane R_C realized with single triode region device

Analysis almost by inspection:


$$A(s) = \frac{g_{md} \left(g_{m5} - sC_c\right)}{s^2 C_C C_L + sC_C g_{m5} + g_{oo} g_{od}}$$

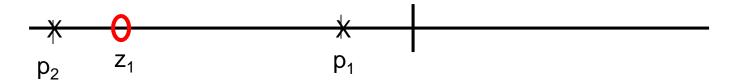
$$\frac{1}{sC_c} \Rightarrow \frac{1}{sC_c} + R_c$$

$$sC_c \Rightarrow \frac{sC_c}{1 + sC_c R_c}$$

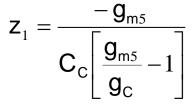
$$A(s) = \frac{g_{md} \left(g_{m5} + sC_c \left[\frac{g_{m5}}{g_c} - 1\right]\right)}{s^2 C_C C_L + sC_C g_{m5} + g_{oo} g_{od}}$$

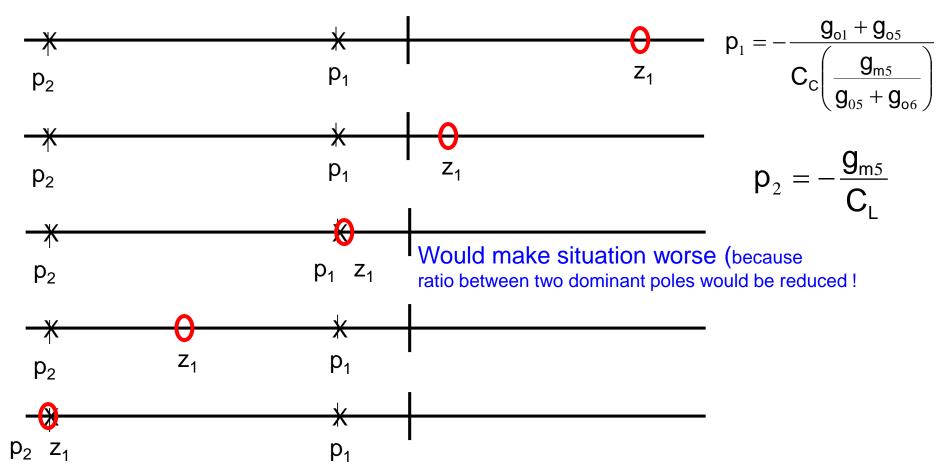
 $z_{1} = \frac{-g_{m5}}{C_{c} \left[\frac{g_{m5}}{2} - 1\right]}$

$$A(s) = \frac{g_{md} \left(g_{m5} + sC_c \left[\frac{g_{m5}}{g_c} - 1 \right] \right)}{s^2 C_c C_L + sC_c g_{m5} + g_{oo} g_{od}}$$

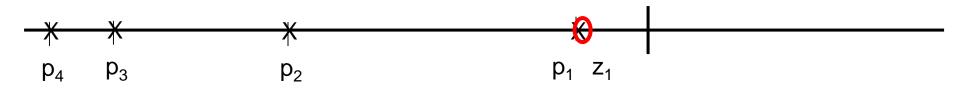

$$z_{1} = \frac{-g_{m5}}{C_{c} \left[\frac{g_{m5}}{g_{c}} - 1 \right]}$$

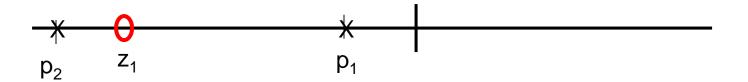
 z_1 location can be programmed by R_C If $g_c > g_{m5}$, z_1 in RHP and if $g_c < g_{m5}$, z_1 in LHP R_C has almost no effect on p_1 and p_2


$$A(s) = \frac{g_{md} \left(g_{m5} + sC_c \left[\frac{g_{m5}}{g_c} - 1\right]\right)}{s^2 C_c C_L + sC_c g_{m5} + g_{oo} g_{od}}$$
$$z_1 = \frac{-g_{m5}}{C_c \left[\frac{g_{m5}}{g_c} - 1\right]}$$


$$p_{1} = -\frac{g_{o1} + g_{o5}}{C_{C} \left(\frac{g_{m5}}{g_{05} + g_{o6}}\right)} \qquad p_{2} = -\frac{g_{m5}}{C_{L}}$$

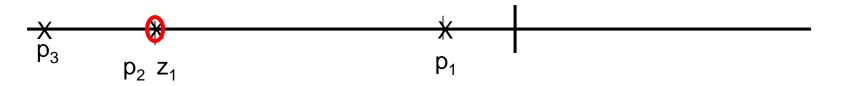
$$\mathbf{p}_2 = -\frac{\mathbf{g}_{\mathsf{m}5}}{\mathbf{C}_{\mathsf{L}}}$$


where should z₁ be placed?



Other parasitic poles, at higher frequencies are present and not too much larger than p₂!

$$z_{1} = \frac{-g_{m5}}{C_{C} \left[\frac{g_{m5}}{g_{C}} - 1 \right]}$$

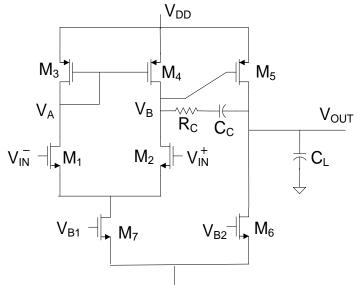

z₁ often used to cancel p₂

Can reduce size of required compensation capacitor

- a) eliminates RHP zero
- b) increases spread between p₁ and p₃

Improves phase margin

Design formulations easily extend to this structure



$$z_{1} = \frac{-g_{m5}}{C_{C} \left[\frac{g_{m5}}{g_{C}} - 1 \right]}$$

Analytical formulation for compensation requirements not easy to obtain (must consider at least 3rd –order poles and both T(s) and poles not mathematically tractable)

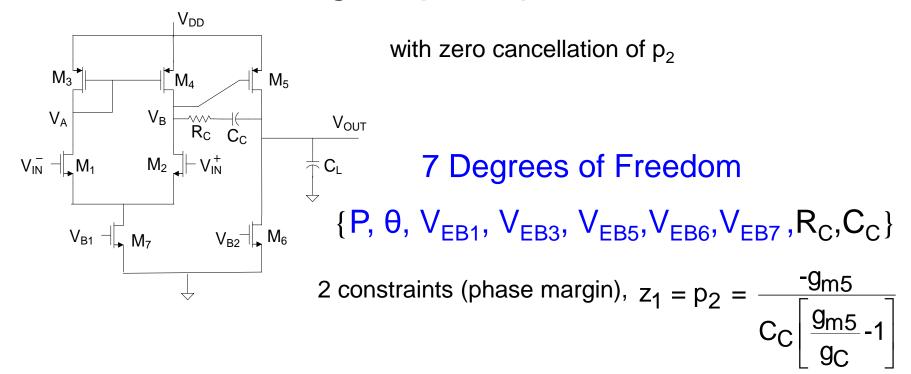
C_C often chosen to meet phase margin (or settling/overshoot) requirements after all other degrees of freedom used with computer simulation from magnitude and phase plots

Basic Two-Stage Op Amp with LHP zero

8 Degrees of Freedom

$$\{P, \theta, V_{EB1}, V_{EB3}, V_{EB5}, V_{EB6}, V_{EB7}, R_C, C_C\}$$

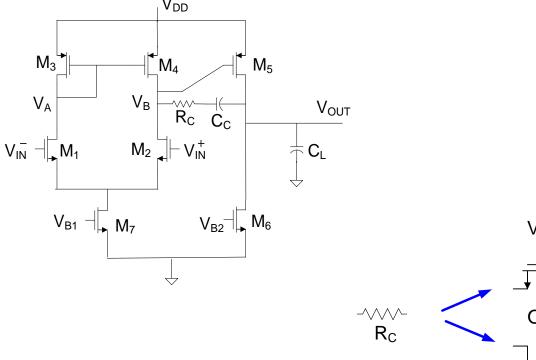
1 constraint (phase margin)


with zero cancellation of p₂

7 Degrees of Freedom

{P,
$$\theta$$
, V_{EB1} , V_{EB3} , V_{EB5} , V_{EB6} , V_{EB7} , R_C , C_C }

2 constraints (phase margin), $z_1 = p_2 = \frac{-g_{m5}}{C_C \left[\frac{g_{m5}}{g_C}-1\right]}$


Basic Two-Stage Op Amp with LHP zero

Design Flow:

- 1. Ignore R_C and design as if RHP zero is present
- 2. Pick R_C to cancel p₂
- 3. Adjust p₁ (i.e. change/reduce C_C) to achieve desired phase margin (or preferably desired closed-loop performance for desired β)

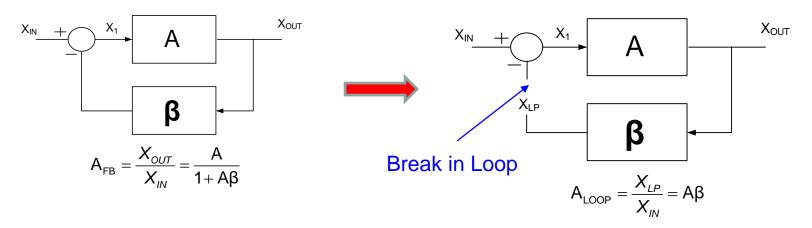
Basic Two-Stage Op Amp with LHP zero

Realization of R_C

$$R_{C} = \frac{L}{\mu C_{OX} W V_{EB}}$$

Transistors in triode region

Very little current will flow through transistors (and no dc current)

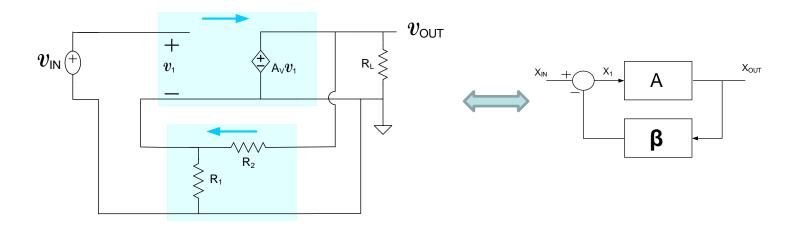

 V_{DD} or GND often used for V_{XX} or V_{YY}

 V_{BQ} well-established since it determines I_{Q5}

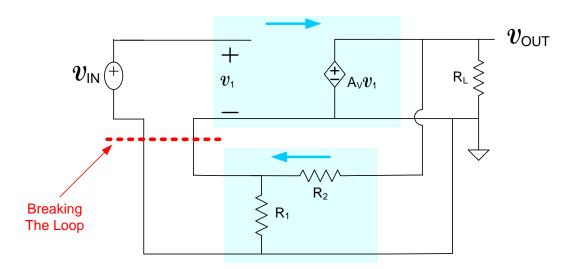
Using an actual resistor not a good idea (will not track g_{m5} over process and temp)

Two-Stage Amplifiers

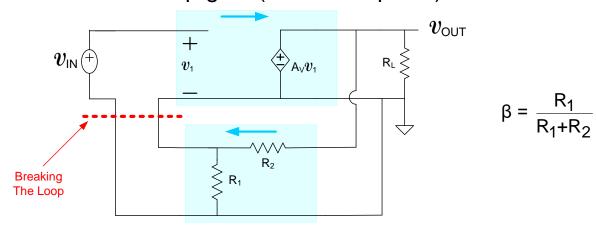
Loop Gain Analysis

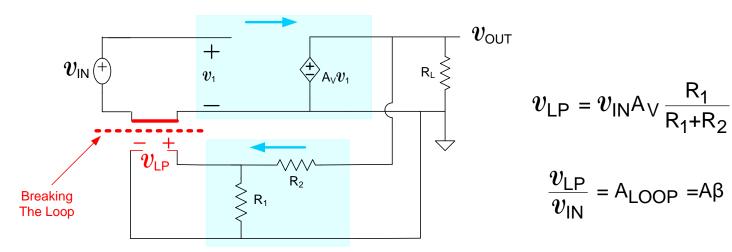


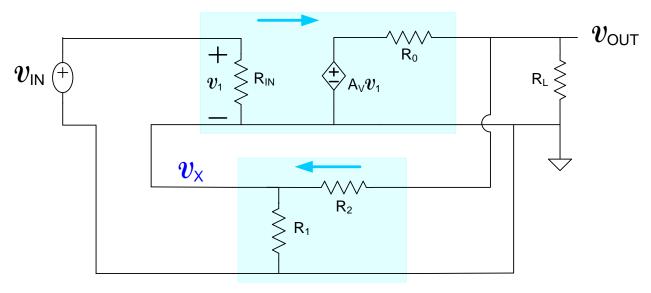
- Loop Gain
 - Loading of A and β networks
 - Breaking the Loop (with appropriate terminations)
 - Biasing of Loop
 - Simulation of Loop Gain
- Open-loop gain simulations
 - Systematic Offset
 - Embedding in closed loop


Loop Gain is a Critical Concept for Compensation of Feedback Amplifiers when Using Phase Margin Criteria (If you must!)

- Sometimes it is not obvious where the actual loop gain is at in a feedback circuit
- The A amplifier often causes some loading of the β amplifier and the β amplifier often causes some loading of the A amplifier
- Often try to "break the loop" to simulate or even calculate the loop gain or the gains A and β
- If the loop is not broken correctly or the correct loading effects on both the A amplifier and β amplifier are not included, errors in calculating loop gain can be substantial and conclusions about compensation can be with significant error


(for voltage-series feedback configuration)

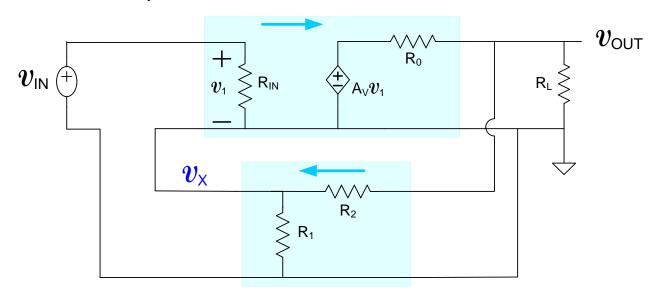

The loop is often broken on the circuit schematic to determine the loop gain


Breaking the loop to obtain the loop gain (Ideal A amplifier)

Note terminations where the loop is broken – open and short

But what if the amplifier is not ideal?

For the feedback amplifier:


$$egin{aligned} v_{\mathsf{OUT}}(\mathsf{G}_\mathsf{O} + \mathsf{G}_\mathsf{L} + \mathsf{G}_2) = & v_{\mathsf{X}} \mathsf{G}_2 + \mathsf{A}_\mathsf{V} v_{\mathsf{1}} \; \mathsf{G}_\mathsf{O} \\ v_{\mathsf{X}}(\mathsf{G}_\mathsf{1} + \mathsf{G}_\mathsf{2} + \mathsf{G}_\mathsf{IN}) = & v_{\mathsf{OUT}} \mathsf{G}_\mathsf{2} + v_{\mathsf{IN}} \mathsf{G}_\mathsf{IN} \\ v_{\mathsf{IN}} = & v_\mathsf{1} + v_{\mathsf{X}} \end{aligned}$$

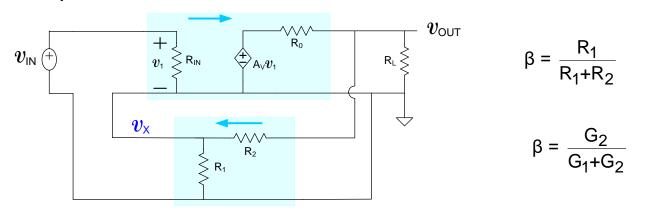
Solving, we obtain

$$\mathsf{A}_{\mathsf{FB}} = \frac{v_{\mathsf{OUT}}}{v_{\mathsf{IN}}} = \frac{\mathsf{G}_{\mathsf{IN}}\mathsf{G}_2 + \mathsf{A}_{\mathsf{V}} \big(\mathsf{G}_{\mathsf{O}} \big[\mathsf{G}_1 + \mathsf{G}_2\big]\big)}{(\mathsf{G}_{\mathsf{O}} + \mathsf{G}_{\mathsf{L}})[\mathsf{G}_1 + \mathsf{G}_2 + \mathsf{G}_{\mathsf{IN}}] + \mathsf{G}_2 \big(\mathsf{G}_1 + \mathsf{G}_{\mathsf{IN}}\big) + \mathsf{A}_{\mathsf{V}} \mathsf{G}_2 \mathsf{G}_{\mathsf{O}}}$$

What is the Loop Gain? Needed to obtain the Phase Margin!

But what if the amplifier is not ideal?

$$\mathsf{A}_{FB} = \frac{v_{OUT}}{v_{IN}} = \frac{\mathsf{G}_{IN}\mathsf{G}_2 + \mathsf{A}_V \left(\mathsf{G}_O \left[\mathsf{G}_1 + \mathsf{G}_2 \right]\right)}{(\mathsf{G}_O + \mathsf{G}_L)[\mathsf{G}_1 + \mathsf{G}_2 + \mathsf{G}_{IN}] + \mathsf{G}_2 \left(\mathsf{G}_1 + \mathsf{G}_{IN}\right) + \mathsf{A}_V \mathsf{G}_2 \mathsf{G}_O}$$


What is the Loop Gain? Needed to obtain the Phase Margin!

Remember:
$$A_{FB} = \frac{F_1(s)}{1 + A\beta}$$

Characteristic Polynomial Determined by $D(s) = 1 + A\beta$

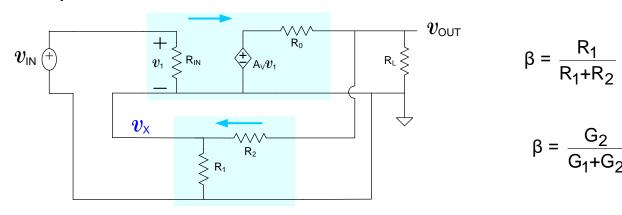
Whatever is added to "1" in the denominator is the loop gain

But what if the amplifier is not ideal?

$$\beta = \frac{R_1}{R_1 + R_2}$$

$$\beta = \frac{G_2}{G_1 + G_2}$$

$$\mathsf{A}_{FB} = \frac{v_{OUT}}{v_{\text{IN}}} = \frac{\mathsf{G}_{\text{IN}}\mathsf{G}_2 + \mathsf{A}_{\text{V}} \big(\mathsf{G}_{\text{O}} \big[\mathsf{G}_1 + \mathsf{G}_2\big]\big)}{(\mathsf{G}_{\text{O}} + \mathsf{G}_{\text{L}}) \big[\mathsf{G}_1 + \mathsf{G}_2 + \mathsf{G}_{\text{IN}}\big] + \mathsf{G}_2 \big(\mathsf{G}_1 + \mathsf{G}_{\text{IN}}\big) + \mathsf{A}_{\text{V}} \mathsf{G}_2 \mathsf{G}_{\text{O}}}$$


Can be rewritten as

$$A_{FB} = \frac{\frac{G_{IN}G_2}{(G_O + G_L)[G_1 + G_2 + G_{IN}] + G_2(G_1 + G_{IN})}{(G_O + G_L)[G_1 + G_2 + G_{IN}] + G_2(G_1 + G_{IN})}}{1 + A_V \left[\frac{G_2G_O}{(G_O + G_L)[G_1 + G_2 + G_{IN}] + G_2(G_1 + G_{IN})} \right]}$$

The Loop Gain is

$$A_{LOOP} = A_{V} \left[\frac{G_{2}G_{O}}{(G_{O} + G_{L})[G_{1} + G_{2} + G_{IN}] + G_{2}(G_{1} + G_{IN})} \right]$$

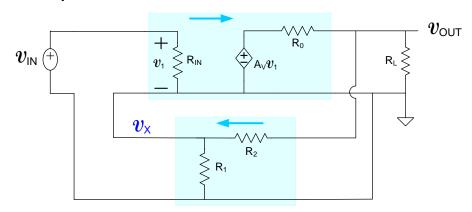
But what if the amplifier is not ideal?

 $\beta = \frac{G_2}{G_1 + G_2}$

$$A_{LOOP} = A_{V} \left[\frac{G_{2}G_{O}}{(G_{O} + G_{L})[G_{1} + G_{2} + G_{IN}] + G_{2}(G_{1} + G_{IN})} \right]$$

This can be rewritten as

$$\mathsf{A}_{LOOP} = \!\! \left(\mathsf{A}_{V} \! \left[\frac{\mathsf{G}_{O} \left(\mathsf{G}_{1} \! + \! \mathsf{G}_{2} \right)}{ \left(\mathsf{G}_{O} \! + \! \mathsf{G}_{L} \right) \! \left[\mathsf{G}_{1} \! + \! \mathsf{G}_{2} \! + \! \mathsf{G}_{|N|} \right] \! + \! \mathsf{G}_{2} \left(\mathsf{G}_{1} \! + \! \mathsf{G}_{|N|} \right)} \right] \! \right) \! \left[\frac{\mathsf{G}_{2}}{\mathsf{G}_{1} \! + \! \mathsf{G}_{2}} \right]$$


This is of the form

$$A_{LOOP} = (A_{VL}) \left[\frac{G_2}{G_1 + G_2} \right]$$

where A_{VL} is the open loop gain including loading of the load and β network!

$$A_{VL} = A_{V} \left[\frac{G_{O}(G_{1}+G_{2})}{(G_{O}+G_{L})[G_{1}+G_{2}+G_{IN}]+G_{2}(G_{1}+G_{IN})} \right]$$

But what if the amplifier is not ideal?

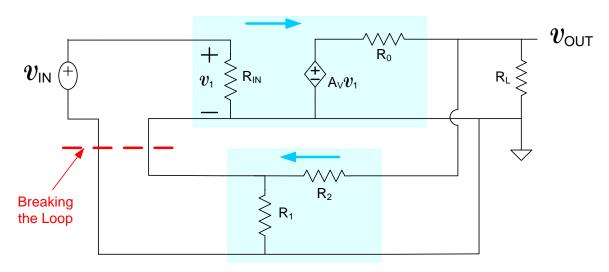
$$\beta = \frac{R_1}{R_1 + R_2}$$

$$\beta = \frac{G_2}{G_1 + G_2}$$

The Loop Gain is

$$\mathsf{A}_{LOOP} = \mathsf{A}_{V} \left[\frac{\mathsf{G}_{2} \mathsf{G}_{O}}{(\mathsf{G}_{O} + \mathsf{G}_{L})[\mathsf{G}_{1} + \mathsf{G}_{2} + \mathsf{G}_{IN}] + \mathsf{G}_{2}(\mathsf{G}_{1} + \mathsf{G}_{IN})} \right]$$

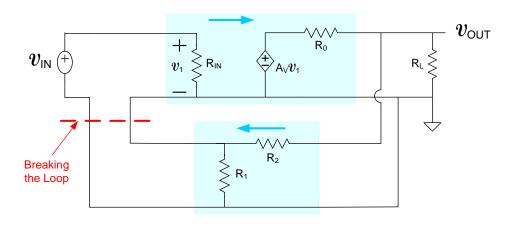
The Forward Amplifier Gain is
$$A_{VL} = A_V \left[\frac{G_O(G_1 + G_2)}{(G_O + G_L)[G_1 + G_2 + G_{IN}] + G_2(G_1 + G_{IN})} \right]$$

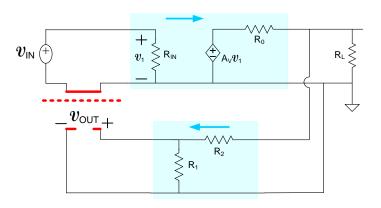

Note that A_{VL} is affected by both its own input and output impedance and that of the β network

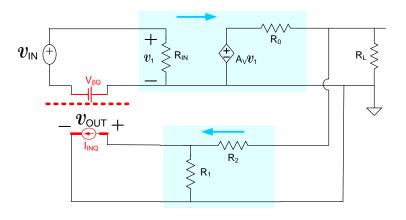
This is a really "messy" expression

Any "breaking" of the loop that does not result in this expression for A_{v_l} will result in some errors though they may be small

(for voltage-series feedback configuration)

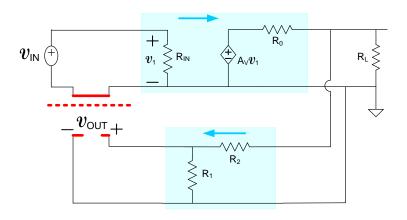

But what if the amplifier is not ideal?




- Most authors talk about breaking the loop to determine the loop gain Aβ
- In many if not most applications, breaking the loop will alter the loading of either the A amplifier or the β amplifier or both
- Should break the loop in such a way that the loading effects of A and β are approximately included
- Consequently, breaking the loop will often alter the actual loop gain a little
- Q-point must not be altered when breaking the loop (for analysis with simulator)
- In most structures, broken loop only gives an approximation to actual loop gain
- Sometimes challenging to break loop in appropriate way

(for voltage-series feedback configuration)

But what if the amplifier is not ideal?



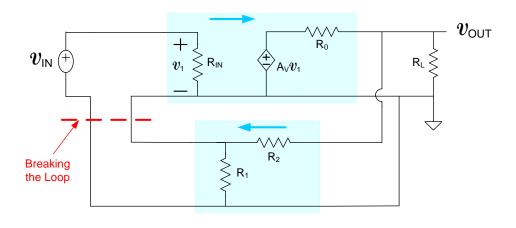
Standard Loop Gain Circuit including Biasing

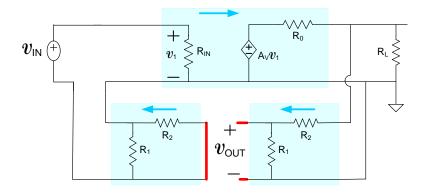
(terminations shown in ss circuit are what is needed in the actual amplifier)

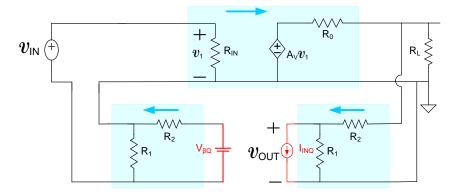
(for voltage-series feedback configuration)

But what if the amplifier is not ideal?

$$\mathsf{A}_{LOOP} = \mathsf{A}_V \Bigg[\frac{\mathsf{G}_2 \mathsf{G}_O}{\big(\mathsf{G}_O + \mathsf{G}_L\big) \big[\mathsf{G}_1 + \mathsf{G}_2\big] + \mathsf{G}_2 \big(\mathsf{G}_1\big)} \Bigg]$$

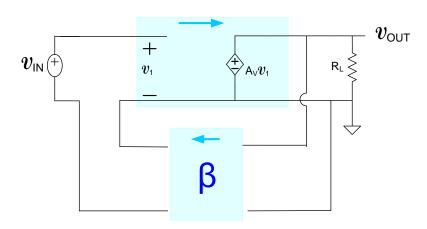

Loop Gain from Terminated Loop

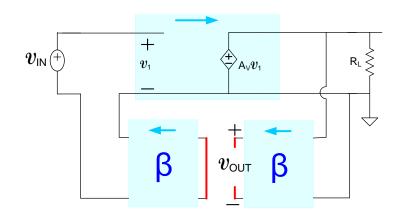

$$\begin{split} A_{LOOP} = A_V & \left[\frac{G_2 G_O}{(G_O + G_L)[G_1 + G_2 + G_{IN}] + G_2(G_1 + G_{IN})} \right] \\ & \qquad \qquad \text{Real Loop Gain} \end{split}$$


Breaking loop even with this termination will result in some error in A_{LOOP}

(for voltage-series feedback configuration)

But what if the amplifier is not ideal?

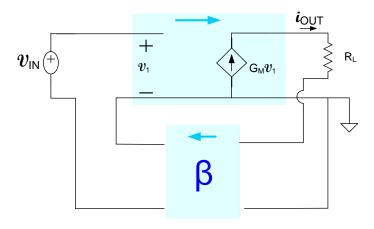

Better Loop Gain Circuit including Biasing

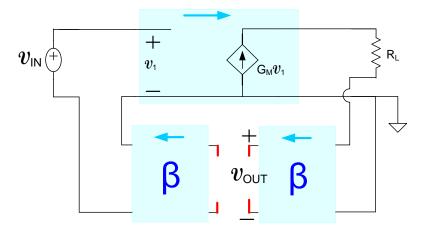

Better Standard Small-Signal Loop Gain Circuit

(terminations shown in ss circuit are what is needed in the actual amplifier)

for four basic amplifier types

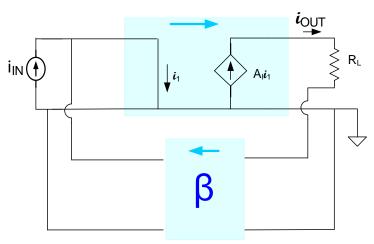
voltage-series feedback

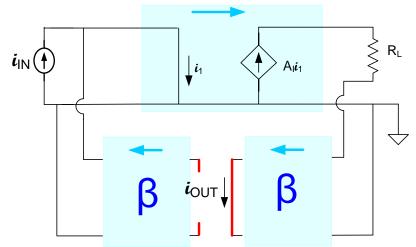




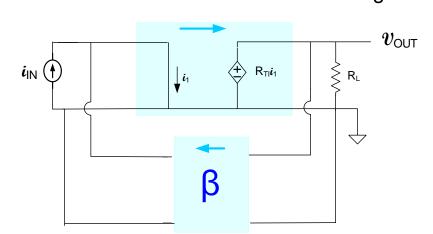
Feedback Amplifier

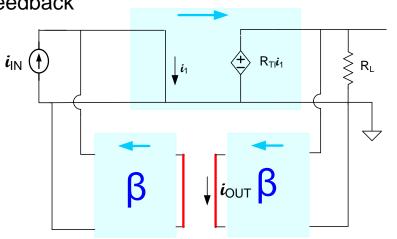
Loop Gain Amplifier


current-series feedback



for four basic amplifier types


current-shunt feedback



Feedback Amplifier

Loop Gain Amplifier voltage-shunt feedback

Stay Safe and Stay Healthy!

End of Lecture 18